
SPRAWOZDANIE 6

Zajęcia nr 7 - Próbkowanie i przekształcanie sygnałów ciągłych,

Michał Midor, gr. 5 - 19.11.2025, godz: 16:45

Wprowadzenie:

Celem laboratorium jest symulacja i analiza procesu cyfrowego przetwarzania sygnałów ciągłych, obejmująca

trzy kluczowe etapy: próbkowanie (dyskretyzację), analizę widmową oraz rekonstrukcję sygnału ciągłego

(konwersję C/A). Głównym zagadnieniem badanym w ćwiczeniu jest Twierdzenie o próbkowaniu (Nyquista-
Shannona).

Symulacje przeprowadzone w środowisku MATLAB mają na celu wizualizację zjawiska aliasingu (nakładania

się widm), powstającego w wyniku niespełnienia warunku f_p > 2f_max, oraz ocenę wpływu filtracji na wierność

odtwarzania sygnałów o różnych charakterystykach widmowych.

Ćwieczenie 1) i 2)

W pierwszej części przeprowadzono symulację próbkowania sygnału sinusoidalnego o częstotliwości f_s = 80

Hz przy częstotliwości próbkowania f_p = 200 Hz. Ponieważ spełniony jest warunek Nyquista (80 < 100 Hz),

otrzymano bezbłędną rekonstrukcję.

clear all; close all;
syms t x w K

fp = 200; fg = fp/2; %Hz
wp = 2*pi*fp; wg = 2*pi*fg;
s = 4/5; ws = s*wg;

x_sin = sin(ws*t);

X_FT_sin_org = fourier(x_sin);

X_FT_sin = X_FT_sin_org + ... % oryginal widma
 symsum((subs(X_FT_sin_org, w, w - K*wp) + ... % 3 aliasy lewe
 subs(X_FT_sin_org, w, w + K*wp)), K , 1, 3); % 3 aliasy prawe

FILT_FT = rectangularPulse(-wg,wg,w); % filtr rekonstruuj¡cy

x_sin_rek = ifourier(X_FT_sin*FILT_FT); % odwr. tarnsf. Fouriera
BND_t = [-10/fp;10/fp];

%t_SMP = [BND_t(1):1/(10*fp):BND_t(2)];
BND_w = [-4*wp;4*wp];
w_SMP = [BND_w(1):wp/10:BND_w(2)];

figure; subplot(2,1,1); hold on; grid on;

1

ezplot(FILT_FT,BND_w); %okno filtru rek.
%ezplot(X_FT_sin,BND_w)

v_num = abs(double(subs(X_FT_sin, w, w_SMP)));
n = find(abs(v_num) == Inf);
stem(w_SMP(n),sign(v_num(n)),'r*', 'LineWidth', 2);
xlabel('\omega [rad/s]'); ylabel('|X(\omega)|')
legend('Okno filtra rek.','Widmo');
subplot(2,1,2); hold on; grid on;
ezplot(x_sin, BND_t);% syg. próbkowany
Tp = 1/fp;
t_p = BND_t(1):Tp:BND_t(2);
y_p = double(subs(x_sin, t, t_p));
plot(t_p, y_p, 'bo', 'MarkerFaceColor', 'b', 'MarkerSize', 4);
ezplot(x_sin_rek, BND_t) % syg. odtworzony
xlabel('t [s]'); ylabel('x(t)')
legend('x_sin','x_sin_rek');

Naniesienie dyskretnych punktów pomiarowcyh w chwilach wielokrotności okresu próbkowania pozwala

zaobserwować, że sygnał zrekonstruowany interpoluje, czyli łączy punkty próbek w sposób idealny.

Zadanie 3)

Zadanie polegało na przetestowaniu odporności systemu na łamanie twierdzenia o próbkowaniu. Zbadano

szereg częstotliwości wejściowych, w tym przekraczających częstotliwość Nyquista (f_g = 100 Hz).

s_cases = [1/5, 6/5, 11/5, 16/5, 4/5, 9/5, 14/5];
for i = 1:length(s_cases)
 s = s_cases(i);
 ws = s*wg;

 % 1 - generacja sygnału

2

 x_sin = sin(ws*t);

 % 2 - transformata i modelowanie próbkowania (aliasy)
 X_FT_sin_org = fourier(x_sin);
 X_FT_sin = X_FT_sin_org + symsum((subs(X_FT_sin_org, w, w - K*wp) + ...
 subs(X_FT_sin_org, w, w + K*wp)), K, 1, 3);

 % 3 - filtracja i rekonstrukcja
 FILT_FT = rectangularPulse(-wg, wg, w);
 x_sin_rek = ifourier(X_FT_sin * FILT_FT)

 % 4 - ustawienie osi do wizualizacji
 BND_t = [-10/fp, 10/fp]; % Zakres czasu
 BND_w = [-4*wp, 4*wp]; % Zakres częstotliwości

 w_SMP = [BND_w(1):wp/10:BND_w(2)];

 % 5 - wizualizacja
 figure();
 % Dziedzina częstotliwości
 subplot(2,1,1); hold on; grid on;
 fplot(FILT_FT, BND_w, 'k--');
 xlabel('\omega [rad/s]'); ylabel('|X(\omega)|');
 legend('Filtr Rekonstrukcyjny', 'Prążki Widma (Aliasy)');

 % Dziedzina czasu
 subplot(2,1,2); hold on; grid on;
 fplot(x_sin, BND_t, 'b');
 fplot(x_sin_rek, BND_t, 'r--'); % rekonstrukcja

 % Dodanie wizualizacji próbkowania
 Tp = 1/fp;
 t_p = BND_t(1):Tp:BND_t(2);
 y_p = double(subs(x_sin, t, t_p));
 plot(t_p, y_p, 'bo', 'MarkerFaceColor', 'b', 'MarkerSize', 4);

 drawnow;
end

x_sin_rek =

Warning: Ignoring extra legend entries.

3

x_sin_rek =

Warning: Ignoring extra legend entries.

x_sin_rek =

Warning: Ignoring extra legend entries.

4

x_sin_rek =

Warning: Ignoring extra legend entries.

x_sin_rek =

Warning: Ignoring extra legend entries.

5

x_sin_rek =

Warning: Ignoring extra legend entries.

x_sin_rek =

Warning: Ignoring extra legend entries.

6

Wniosek:

Filtr rekonstrukcyjny przepuszcza tylko składowe z zakresu (-f_g, f_g).

Zadanie 4)

W tym zadaniu zamiast sygnału sinusoidalnego, zbadano sygnał o widmie ciągłym w kształcie trójkąta,

rozciągającym się do granicy pasma Nyquista, by sprawdzić, jak zachowują się szerokie widma w procesie

próbkowania.

figure();
X_Triangle_Org = triangularPulse(-wg, wg, w);

% Dodanie Aliasów
X_Triangle_Aliased = X_Triangle_Org + symsum(subs(X_Triangle_Org, w, w-K*wp)
+...
 subs(X_Triangle_Org, w, w+K*wp),
K, 1, 3); % Podastawienie za K wartości od 1 do 3

% Filtr rekonstrukcji
FILT_REC = rectangularPulse(-wg, wg, w);

% Rekonstrukcja w dziedziine czasu

x_triangle_rek = ifourier(X_Triangle_Aliased*FILT_REC);

subplot(2,1,1); hold on; grid on;
fplot(FILT_REC, BND_w, 'k--');
fplot(X_Triangle_Aliased, BND_w, 'r');
fplot(X_Triangle_Org, BND_w, 'b', 'LineWidth', 1.5); % Rysowanie oryginału
jako punkt odniesienia

7

subplot(2,1,2); hold on; grid on;
x_trangle_theory = ifourier(X_Triangle_Org); % Teoretyczny sygnał po
rekonstrukcji, przejście z dziedziny częstotliwości do czasu
fplot(x_trangle_theory, BND_t, 'b');
fplot(x_triangle_rek, BND_t, 'g--'); % rekonstrukcja sygnału trójkątnego
xlabel('t [s]'); ylabel('x(t)');

Zadanie 5)

Ostatnie ćwiczenie symulowało próbkowanie fali prostokątnej, która teoretycznie posiada nieskończone widmo

prążkowe (nieparzyste harmoniczne). Sygnał zdefiniowano jako sumę szeregu Fouriera (N=20 wyrazów).

cases_multipliers = [1/5, 4/5, 1, 6/5]; % Mnożniki dla a, b, c, d

% Zakres harmonicznych
N_harm = 20;
n_range = -N_harm:N_harm;

for i = 1:length(cases_multipliers)
 s = cases_multipliers(i);
 fs = s*fg;
 ws = 2*pi*fs;

 % Budowa widma fali prostokątnej

 X_Spectrum_Cont = 0;

 for n = n_range
 if n == 0
 Xn = 0.5; % Składowa stał (czyli wartość średnia)

8

 elseif mod(n,2)==0
 Xn = 0; % Dla parzystych
 else
 Xn = 1/(1j*n*pi);
 end
 X_Spectrum_Cont = X_Spectrum_Cont + 2*pi * Xn * dirac(w-n*ws);
 end

 % Symulacja próbkowania

 X_Spectrum_Aliased = X_Spectrum_Cont;

 for k = 1:3 % dodawanie aliasów w pętli dla stabilności
 X_Spectrum_Aliased = X_Spectrum_Aliased + ...
 subs(X_Spectrum_Cont, w, w - k*wp) + ...
 subs(X_Spectrum_Cont, w, w + k*wp);
 end

 % Filtracja i rekonstrukca

 FILT_REC = rectangularPulse(-wg, wg, w);

 X_Final = X_Spectrum_Aliased*FILT_REC;

 x_rek = ifourier(X_Final, w, t);

 figure();
 subplot(2,1,1); hold on; grid on;
 T_sig = 1/fs; % okres syngału i 4 okresy na wykresie
 BND_t = [-2*T_sig, 2*T_sig];

 fplot(x_rek, BND_t, 'r', 'LineWidth', 1.5);
 % Idealny prostokąt dla odniesienia
 %t_num = linspace(BND_t(1), BND_t(2), 1000);
 %x_ideal = 0.5 + 0.5*square(ws*t_num);
 %plot(x_ideal, t_num, 'b--');

 subplot(2,1,2); hold on; grid on;
 BND_w = [-4*wp, 4*wp];
 fplot(FILT_REC, BND_w, 'k--'); % Filtr

 drawnow;
end

9

10

Filtr ucina wyższe harmoniczne, które wyjdą poza f_graniczne (f_g), co spowoduje, że pozostanie jedynie "goła"

sinusoida, a prostokąt zamieni się w sinus.

Wniosek:

Idealna rekonstrukcja sygnałów o ostrych zboczach (szerokopasmowych) wymaga nieskończenie wysokiej

częstotliwości próbkowania lub zaakceptowania utraty szczegółów (wygładzenia sygnału)

11

