
SPRAWOZDANIE 10
Modelowanie Systemów Dynamicznych

Temat ćwiczenia: Identyfikacja obiektu regulacji

Michał Midor, gr. 5, 17.12.2025 r. - Środa 13.15

Cel ćwiczenia:
Celem ćwiczenia jest poznanie metod identyfikacji parametrów modelu rzeczywistego obiektu regulacji. Obiekty 

rzeczywiste są nieskończenie wymiarowe, posiadają zakłócenia i ich odpowiedzi nigdy nie będą tak głądkie, 

jak te z matematycznych obiektów, lecz w sterowaniu dla uproszczenia można opisać je różnymi modelami 

transmitancyjnymi, tak zwanymi obiektami inercyjnymi.

Najpierw ręcznie zostaną dobrane parametry modelu zastępczego i próba zminimalizowania błędu 

wyznaczonego za pomocą metody średniej kwadratów. Dalszym etapem będzie stworzenie funkcji zwracającej 

błąd dla różnego rodzaju zakładanego obiektu, a następnie użyta zostanie funkcja optymalizacyjna szukająca 

najlepszych parametrów (takich, dla których błąd jest najmniejszy) i porównane zostaną minimalne błędy z 

różnych modeli.

Rozwiązanie zadań:
Ćwiczenie rozpoczyna się od wczytania odpowiedzi skokowej rzeczywistego modelu oraz przedstawienia jej na 

wykresie.

load obiekt.mat
global t;
global y;
t = 0:59;

plot(y); 

Następnie dobierane są parametry dla obiektu inercyjnego I rzędu z opóźnieniem o transmitancji:
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Wzmocnienie k, stała czasowa T, oraz opóźnienie theta zostają dobrane "na oko", by wykresy odpowiedzi 

skokowych modelu rzeczywistego i symulowanego były zbliżone. Zaczyna się od prostych parametrów 

wstępnych parząc na wykres, a po paru eksperymentach można dojść do parametrów w miarę optymalnych.

display("Model A z ręcznie dobranymi parametrami.")

    "Model A z ręcznie dobranymi parametrami."

% parametry wstępne
%k = 2;
%T = 10;
%theta = 8;

% parametry optymalne
k = 2.11;
T = 14.92;
theta = 6.9;

sys_order1 = tf(k, [T 1], "InputDelay", theta);
figure();
y_order1 = step(sys_order1, t);
plot(t, y, t, y_order1, "Color", "red"); drawnow;

error = (y-y_order1);
result_error = sum(error.^2)/length(error)

result_error = 
0.0017
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Dla tak dobranych parametrów błąd wynoski 0.0017, co jak się okaże poźniej, jest całkiem dobrym wynikiem.

Chcąc skorzystać z funkcji optymalizującej 'fminsearch' z biblioteki ‘Optimization Toolbox’, najpierw definiuje 

się funkcję zwracającą wartość błędu dla zadanych parametrów. Pierwsza funkcja 'identA' będzie przyjmowała 

parametry dla obiektu inercyjnego I rzędu z opóźnieniem. Wygląda ona następująco:

Funkca 'fminsearch' wywoła funkcję 'identA' wiele razy z podanym wektorem parametrów 'X0_A' i zwróci 

parametry obiektu, dla których błąd jest minimalny.

X0_A = [k, T, theta];
% X0_A = [2 15 6];
display("Model A z parametrami zoptymalizowanymi automatycznie.")

    "Model A z parametrami zoptymalizowanymi automatycznie."

[parametry, blad] = fminsearch('identA', X0_A);

blad_A = blad
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blad_A = 
0.0015

Błąd wynosi 0.0015, a zatem ręcznie dobrane parametry były już bardzo dobre. Przebieg odpowiedzi skokowej 

symulowanego modelu w porównianiu do rzeczywistego widoczny jest na wykresie.

Może się jednak okazać, że zaproponowany obiekt nie jest najlepszym dopasowaniem do obiektu 

rzeczywistego, więc należy sprawdzić kolejne możliwości. Jedną z nich jest obiekt inercyjny II rzędu o 

transmitancji: 

Należy wybrać parametry początkowe (punkt startowy), stworzyć funkcję zwracającą błąd dla zadanego typu 

obiektu, tym razem wygląda ona następująco:

 

Następnie wywoływana jest metoda 'fminsearch'.

X0_B = [2 5 5 1.5];
display("Model B z parametrami zoptymalizowanymi automatycznie.")

    "Model B z parametrami zoptymalizowanymi automatycznie."

[parametry, blad] = fminsearch('identB', X0_B); % Punkt startowy bardzo 
ważny, bo może prowadzić do błędu
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blad_B = blad

blad_B = 
0.0013

parametry_B = parametry

parametry_B = 1×4
    2.1292    5.5212    5.2836    1.5300

Tym razem wynik błędu wynosi 0.0013, co jest poprawą w porównaniu do pierszego obietku. Dopasowanie 

można zaobserwować na wykresie.

Obiekt regulacji może być również modelem wieloinercyjnym bez opóźnienia, opisanym następującą 

transmitancją:

Problemem jest potęga mianownika transmitancji, co uniemożliwa użycie funkcji tf(). Możliwe natomiast jest 

wykorzystanie zpk(). Transmitancja po przekształceniu nie posiada zer, a bieguny są jednym pierwiastkiem 

wielokrotnym (-1/T), a wzmocnienie wynosi k/(T^n).

Funkcja błędu wygląda zatem następująco:
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Chcąc przeprowadzić analizę błędu dla różnych wartości n, nie można podać 'n' jako kolejnego elementu 

wektora argumentów, gdyż funkcja optymalizująca starałaby się również ten parametr zoptymalizować, co nie 

jest fizycznie możliwe, 'n' musi być liczbą naturalną, powinno być również większe od 2, ponieważ inaczej 

wyszłyby poprzednie obiekty.

Rozwiązaniem jest wywołanie funkcji optymalizującej w pętli, dla różnych 'n', lecz 'n' jest przekazywana do 

funkcji jako zmienna globalna.

display("Model C")

    "Model C"

k_C = 1;
T_C = 1;
X0_C = [k_C, T_C];

n_val = [3, 4, 5, 6];
global n

display("Wyniki błędu modelu C dla różnych n.")

    "Wyniki błędu modelu C dla różnych n."

for i=1:length(n_val);
    n = n_val(i);
    display(strcat('n=',string(n),':'));
    [parametry, blad] = fminsearch('identC', X0_C) % Punkt startowy bardzo 
ważny, bo może prowadzić do błędu
end

    "n=3:"
parametry = 1×2
    2.0396    6.6554
blad = 
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0.0024
    "n=4:"
parametry = 1×2
    1.9881    4.7881
blad = 
0.0040
    "n=5:"
parametry = 1×2
    1.9567    3.7380
blad = 
0.0071
    "n=6:"
parametry = 1×2
    1.9346    3.0613
blad = 
0.0106

Najmniejszy błąd został uzyskany dla n = 3, każde zwiększenie tej wartości powoduje coraz większy błąd. Do 

wizualizacji odpowiedzi skokowej tego modelu należy użyć parametrów zwróconych właśnie dla tego n.

n = 3;
[parametry, blad] = fminsearch('identC',X0_C)

parametry = 1×2
    2.0396    6.6554
blad = 
0.0024

k_C = parametry(1);
T_C = parametry(2);

zeros = [];
ones_to_scale = ones(1, n);
poles_C = -1/T_C * ones_to_scale;
K = k_C/(T_C.^n);

sys = zpk(zeros, poles_C, K);
y_sym = step(sys, t);
display("Model C z parametrami zoptymalizowanymi automatycznie dla n = 3.")

    "Model C z parametrami zoptymalizowanymi automatycznie dla n = 3."

plot(t, y_sym, t, y);
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Najmniejszy błąd uzyskany dla tego modelu równy 0.0024 jest większy od błędów dla porzednich modeli. Dla 

modelu A wyniósł on 0.0015, a dla modelu B 0.0013. Analizując uzyskane wyniki błędów można stwierdzić, że 

obiekt rzeczywisty jest obiektem inercyjnym II rzędu z opóźnieniem równym 5,2836.

8


