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Modelowanie Systemow Dynamicznych
Temat ¢wiczenia: Linearyzacja uktadow nieliniowych

Michat Midor, gr. 5, 10.12.2025 . - Sroda 13.15

Cel éwiczenia:

Niniejsze ¢wiczenia koncentrujg sie na praktycznym zastosowaniu linearyzacji systeméw dynamicznych. Proces
ten zostanie przeprowadzony na bazie opracowanego wczesniej nieliniowego modelu zbiornika z grzaniem

i statym odptywem. Do realizacji zadania wykorzystane zostang natywne narzedzia srodowiska MATLAB,

takie jak polecenia trim (do wyznaczania punktu rownowagi) oraz Isim (do symulacji odpowiedzi modelu
liniowego). Kluczowym etapem bedzie implementacja modelu nieliniowego w formie S-funkcji, co umozliwi jego
poprawng integracje ze srodowiskiem SIMULINK i efektywne wykorzystanie algorytméw linearyzujacych.

Rozwigzanie zadan:

Rzeczywistos¢ fizyczna jest z natury nieliniowa, co objawia sie zaréwno w charakterystykach komponentow
(np. rezystancja w elektronice), jak i w samych réwnaniach opisujgcych dynamike proceséw. Cho¢ modele
nieliniowe najwierniej oddajg zachowanie obiektow, wiekszos¢ klasycznych metod syntezy uktadow regulacii
oraz narzedzi analitycznych opiera sie na teorii uktadéw liniowych. Wymusza to dokonania aproksymacji
zachowania obiektu nieliniowego za pomocg modelu liniowego w procesie linearyzacji.

O ile do samej symulacji wczes$niej wspomanianiego zbiornika wystarczaly solvery rownan rézniczkowych,
o tyle projektowanie zaawansowanych algorytméw sterowania wymaga wyznaczenia liniowego przyblizenia
dynamiki tego procesu.

Nalezy pamietac, ze linearyzacja jest poprawna jedynie w bliskim sgsiedztwie konkretnego punktu pracy.
Definiujemy go jako stan ustalony obiektu, w ktérym zmienne stanu (objetos¢ i temperatura) oraz sygnaty
wejsciowe (w szczegollnosci moc grzatki) przyjmujg state, pozgdane wartoSci.

Proces uzyskiwania przyblizenia liniowego przebiega w nastepujacych krokach:

1. Definicja dynamiki nieliniowej, czyli opracowanie opisu matematycznego w formie funkcji stanu (zgodnie
Z metodami z poprzednich zaje€), umozliwiajacej integracje numeryczng. Kod zrédtowy zawarty jest w pliku
zbiornik_stan.m iwyglada nastepujgco:




function dx = zbiornik stan(t,x,wi,w,Ti,Q)

% Argumenty wejsciowe:

% t - czas

% x - wektor stanu uktadu

% wi - doptyw

%S W - wyptyw

% Ti - temperatura cieczy doptywajace]j

% Q - moc dostarczana (grzanie)

g m e m e meeeooeooooo- zmienne stanu ---------
x1 = x(1); % objetosc¢

x2 = x(2); % temperatura

R e LR R T R parametry -----------
C = 4200; % ciepto wtasciwe [J/(Kg*K)]

ro = 1000; % gestosc¢ [kg/m3]

R R rownania stanu --------
dxl1 =1/ ro * (wi-w);

dx2 = wi * (Ti - x2) / (ro * x1) + Q / (ro * x1 * C);
dx = [dx1;dx2]; % pochodne stanu

W tej funkcji tworzone sa 2 réwnanie rézniczkowe, ktére zostanag rozwigzane przez solver.

2. Przygotowanie S-funkcji adekwatnej dla modeli nieliniowego zapisanej w pliku zbiornik _sfcn.m oraz

modelu w simulinku na jej podstawie w pliku zbiornik_sys._mld.

Whnetrze funkcji wyglada nastepujaco:

function [sys,x@,str,ts]=zbiornik sfcn(t,x,u,flag,Ve,T0)
switch flag % ustawiane na poczatku przez simulink na 0
case 0 % inicjalizacja

str = [];

ts = [0 0];

s = simsizes;
s.NumContStates = 2; % liczba stanow ciggtych
s.NumDiscStates = @; % liczba standow dyskretnych
s.NumQutputs = 2; % liczba wyjsc

s.NumInputs = 4;
s
s

% liczba wejsc
.DirFeedthrough = @; % wejsécie nie przenosi sie bezposrednio na wyjscie
.NumSampleTimes = 1; % czas probkowania, simulink prébkuje automatycznie

sys = simsizes(s);

X0 = [VO, TO]; % stan poczgtkowy

case 1 % pochodne, stan naormalnej pracy
wili = u(l);

W= u(2);

Ti = u(3);

Q = u(4);

sys = zbiornik_stan(t,x,wi,w,T1,Q);
case 3 % wyjsécie

sys = X;

case {2 4 9}

sys =[];

otherwise

error(['unhandled flag =',6num2str(flag)]);
end

Model w simulinku wyglada w ten sposob:

zbiornik_sfcn

YYVYY

(2T

Sygnaty sterujgce (bloczki import) przekazywane przez multiplekser odpowiadajg tym zdefiniowanym w S-
funkcji: 1 - wi, 2 -w, 3-Ti, 4 - Qi sg rozdzielane przez demultiplekser do bloczkéw wyjsciowych (outport).



Nalezy rowniez ustawi¢ nastepujace parametry poczatkowe:

S-function name: |zbiomnik_sfcn Edit
S-function parameters: V0O TO

S-function modules: |

Przed uzyciem funkcji trim() deklarowane sg state oraz parametry modelu nielinowego, a takze przeprowadzona
zostata wizualizacja rozwigzan solverow ode45.

clear;
Q = 15000; %[w], dla 12000 nie dziata poprawnie

w = 0.4; %[kg/s] wyptyw

wi = 0.4; %[kg/s] doptyw

Ti = 293; %[K]

TO = 293; %[K]

VO = 0.04; %[m3]

T zad = 303; % zadana temperatura [K]
V_zad = 0.04; % zadana objetos¢ [m3]

display("'Doptyw 1 wyptyw rowne'™)
"Doptyw i wypdtyw rowne'

[t,x] = oded45(@zbiornik_stan, [0:799], [VO,TO], [1, wi, w, Ti, Q);
X(:,2); % objetos¢ | temperatura wyjscia

subplot(3,1,1)

plot(t, x(:,2))
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display("'Doptyw wiekszy od wypdywu'™)
"Doptyw wiekszy od wyptywu™

w = 0.4; %[kg/s]

wi = 0.6; %[kg/s]

[t,x] = oded45(@zbiornik_stan, [0:799], [VO,TO], [1, wi, w, Ti, Q);
subplot(3,1,2)

plot(t, x(:,2))

display("'Doptyw mniejszy od wyptywu'™)
"Doptyw mniejszy od wyptywu*

w = 0.4; %[kg/s]

wi = 0.3; %[kg/s]

[t,x] = oded45(@zbiornik_stan, [0:799], [VO,TO], [1, wi, w, Ti, Q);
x(:, 1)

ans
.0400
.0399
.0398
.0397
.0396
.0395
.0394
.0393

[eNeoNoNeoNoNoNeNeN|



-0392
-0391
-0390
-0389
-0388
.0387
-0386

,Oo0o0oo0oo0ooo0o

x(:

ans
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N
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-0000
-0000
-0000
-0000
-0000
-0000
-0000
-0000
-0000
-0000
-0000
-0000
-0000
-0000
-0000

L0000 00000000O00O0 %

subplot(3,1,3)
plot(t, x(:,2))
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Model dla ostatniego warunku matematycznie jest poprawny, ale fizycznie nie ma juz sensu, poniewaz
pojemnosc cieczy w zbiorniku staje sie ujemna i prowadzi do btednych wynikow temperatury.

3. Obliczenie zestawu parametréow dla punktu pracy za pomoca funkcji trim().

Kluczowym etapem przygotowania modelu do linearyzaciji jest odnalezienie stanu rownowagi systemu przy
uzyciu polecenia trim. Algorytm ten, bedacy integralng czescig srodowiska Simulink, wykonuje obliczenia
optymalizacyjne, dazgc do zminimalizowania pochodnych stanu.

Pierwszym argumentem jest nazwa pliku .slx zawierajgcego strukture blokowg badanego zbiornika.

Kolejne parametry definiujg wartosci poczatkowe oraz restrykcje narzucone na stany (X), wejscia (U) i wyjscia
(Y).

Szczegdblng uwage nalezy zwrécic¢ na ostatni argument wywotania. Jest to wektor sterujgcy zachowaniem
solvera optymalizacyjnego. Jego drugi element okresla dopuszczalny btagd poszukiwania rozwigzania.
Standardowa wartos¢ (10”-4) okazata sie niewystarczajaca dla dynamiki badanego obiektu, co wymusito
zmniejszenie wartosci parametru.

% Wokoét tych punktédw trim bedzie szuka¢ stanu ustalonego
X0=[0.04;303]; % wektor stanu (w stanie ustalonym)
U0=[0.4;0.4;293;Q]; % wektor wejsc¢ [wi,w,Ti,Q]
YO0=[0.04;303]; % wektor wyjs¢ jaki chcemy otrzymac

% Blokada wejs¢, wyjs¢ i stanu



IX=[1; % wartosci stanu nie sa blokowane

1U=[1;2;3]; % pierwsza (wi), druga (w) i trzecia zmienna wejsciowa (Ti) jest
zablokowana (nha wartosciach odpowiednio: 0.4,0.4,293)

1Y=[1;2]; % pierwsza (V=0.04) i druga (T=303) zmienna wyjsSciowa jest
zablokowana

% Takie blokady, aby tylko Q sie zmieniato.

dx0 = [1;

idx = [1;

options = [1, le-6];
display("'Wywotanie funkcji trim().")

"Wywotanie funkcji trimQ."
[x,u,y,dx,options] = trim("zbiornik _sys®,X0,U0,YO0, IX,1U,1Y,dx0, idx,options)

Warning: S-function block "zbiornik_sys/S-Function® references obsolete level-1 MATLAB S-function
"zbiornik_sfcn®". Manually review the code and convert to level-2 MATLAB S-function if necessary.
For more information, see Convert Level-1 MATLAB S-Functions to Level-2.

F-COUNT MAX{g} STEP Procedures
8 0.0107143 1

16 0.0234955 1 Hessian modified twice
26 0.0264011 0.25 Hessian modified twice
44 0.0264111 0.000977 Hessian modified twice
55 0.0276964 0.125 Hessian modified twice
70 0.0277711 0.00781 Hessian modified twice
81 0.0289678 0.125 Hessian modified twice
96 0.0290369 0.00781 Hessian modified twice
105 0.0335164 0.5 Hessian modified twice
125 0.0335178 0.000244 Hessian modified twice
133 0.0394223 1 Hessian modified twice
142 0.0396946 0.5 Hessian modified twice
151 0.0398351 0.5 Hessian modified twice
160 0.0399064 0.5 Hessian modified twice
168 0.0399783 1 Hessian modified twice
176 0.0399785 1 Hessian modified twice
184 0.0399775 1 Hessian modified twice
192 7.991e-05 1 Hessian modified

200 3.16677e-13 1 Hessian modified

201 3.16677e-13 1 Hessian modified

Optimization Converged Successfully
Active Constraints:

1
2
3
6
7
8
X =
0.0400
303.0000
u:
104 X
0.0000
0.0000
0.0293
1.6800
y:
0.0400
303.0000
dx =



1012 x
0]
0.3167
options =
1.0000 0.0000 0.0001 0.0000 0] 0] 1.0000 o---

display(u(4)); % czwarte wejsScie to moc Q
1.6800e+04
Q= ud);
Czwartym elementem wektora wejs¢ jest zoptymalizowana przez algorytm moc grzaitki Q.

4. Linearyzacja uktadu poprzez wywotanie funkcje 'linmod', ktéra ha podstawie otrzymanych powyzej
parametrow 'x' oraz 'u' zwraca 4 macierze opisujace w przestrzeni stanéw model liniowy badanego obiektu
wokot punktu pracy. Najpierw przeprowadzona zostanie linearyzacja w stanie ustalonym.

display('Linearyzacja uk#adu w stanie ustalonym™)
"Linearyzacja ukdadu w stanie ustalonym"

[A,B,C,D] = linmod("zbiornik sys®, x, u) % linearyzacja ukfadu w stanie
ustalonym
Warning: S-function block "zbiornik_sys/S-Function® references obsolete level-1 MATLAB S-function

"zbiornik_sfcn®. Manually review the code and convert to level-2 MATLAB S-function if necessary.
For more information, see Convert Level-1 MATLAB S-Functions to Level-2.

A =
0 0
-0.0000 -0.0100
B =
0.0010 -0.0010 0 0
-0.2500 0 0.0100 0.0000
C =
1.0000 0
0 1.0000
D =
0 0 0 0
0 0 0 0

Korzystajac z przestrzeni stanébw mozna wygenerowac po 2 transmitancje dla kazdego wejscia, czyli zestaw 8
transmitanciji.

display(''Zestaw 8 transmitancji ukdadu.')

"Zestaw 8 transmitancji ukdadu."

iu = [1, 2, 3, 4];

for 1 = 1u

[licz,mian] = ss2tf(A,B,C,D,i);
printsys(licz,mian)

end

num(1l)/den =



num(1)/den =

-0.001 s - 1e-05

s"2 + 0.01 s
num(2)/den =

8.0064e-15

sN"2 + 0.01 s

num(1)/den =

num(2)/den =

5.9524e-06 s

Kluczowym aspektem symulacji modelu liniowego jest fakt, ze obliczenia sg realizowane w dziedzinie
zmiennych odchytkowych. Reprezentujg one réznice pomiedzy wartoscig aktualng a wartoscig przyjeta w
punkcie pracy.

Aby poprawnie zainicjalizowac funkcje Isim(), konieczne jest zdefiniowanie wymuszen w formie odchytek.
Rozmiar macierzy sterowan U Scisle zalezy od wektora czasu t (liczba wierszy) oraz liczby sygnatéw
wejsciowych (liczba kolumn). Poniewaz w rozwazanym scenariuszu sygnaly sterujgce pozostajg state i rowne
wartosciom z punktu pracy, macierz odchytek sterowan sktada sie wytgcznie z zer.

U = zeros(length(t), 4); % same zera bo sterowanie takie same jak w stanie
zerowym, czyli odchydki w porownaniu do poczatku sg zerowe

X_pocz = [0.04; 293];

x_ust = [0.04; 303];

X0 = X _pocz - x _ust; % warunek poczatkowy w zmiennych odchydkowych



y = Isim(A,B,C,D,U,t,x0);

display(“Model liniowy w stanie ustalonym®)
Model liniowy w stanie ustalonym

figure();

subplot(2,1,1)

plot(t,y(:,1) + x_ust(l))

title(""Objetos¢ cieczy w funkcji czasu'™)

xlabel ("*Czas symulacji [s]™)

ylabel ("'Objetosc (V) [m3]™)

legend("Model nieliniowy®, "Model liniowy", “Location®, "best")

Warning: Ignoring extra legend entries.

subplot(2,1,2)

plot(t,y(:,2) + x_ust(2))

title("Temperatura cieczy w funkcji czasu')

xlabel ("'Czas symulacji [s]')

ylabel (""Temperatura (T) [K]')

legend("Model nieliniowy®, "Model liniowy", “Location®, "best")

Warning: Ignoring extra legend entries.

Objetosc cieczy w funkcji czasu
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Przebieg funkcji liniowej i nieliniowej bedzie taki sam w stanie ustalonym, poniewaz obie funkcje w punkcie
pracy sa tak naprawde liniowe.
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By zauwazyc roznice, nalezy wykresli¢ wykres btedu.

wi = 0.4;

w = 0.4;

[t.n_Llin_2, x n_lin_2] = ode45(@zbiornik_stan, [0:799], [VO,TO], L[], wi, w,
Ti, Q;

display("Zmiana temperatury dla obu modeli. Stan ustalony.")
Zmiana temperatury dla obu modeli. Stan ustalony.

figure(;

subplot(2, 1, 1);

hold on

plot(t, x_n_lin_2(:, 2)); % nieliniowy

plot(t,y(:,2) + x ust(2));: % liniowy

hold off

title("Temperatura cieczy w funkcji czasu'™)

xlabel ("'Czas symulacji [s]™)

ylabel (""'Temperatura (T) [K]')

legend("Model nieliniowy®, “Model liniowy", “Location®, "best®)

subplot(2, 1, 2)

plot(t, x n_lin_2(:, 2) - (y(:,2) + x_ust(2)))
title("Wykres btedu'™)

xlabel (*'Czas symulacji [s]')

ylabel (""Wielkos¢ bdedu'™)
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Temperatura cieczy w funkcji czasu
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Btad wystepuje, lecz jest kilka rzedow wartosci mniejszy od wartosci, do ktorej sie odnosi, wiec takie
przyblizenie jest wystarczajgce. Znaczna roznica bedzie widoczna dopiero po wyjsciu ze stanu ustalonego
(oddalenie sie od punktu pracy). W celu zasymulowania tego zdarzenia doptyw zostanie zwiekszony o 0.1 kg/s,
zatem wartoS$¢ odchyiki w pierwszej kolumnie sterowan wyniesie 0.1

% stan nieustalony
wi = 0.5;

w = 0.4;

u(:, 1) = 0.1;

X_pocz = [VO, TO];
X _ust = [V_zad, T zad];

X0 = X_pocz-x_ust;
y = Isim(A,B,C,D,U,t,x0);

[t n_ Tin 2, x n_lin_2] = ode45(@zbiornik_stan, [0:799], [VO,TO], [1, wi, w,
Ti, Q);

display("Zmiana temperatury dla obu modeli. Stan nieustalony.")

Zmiana temperatury dla obu modeli. Stan nieustalony.
figure();
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subplot(2, 1, 1)

hold on

plot(t, x n_lin_2(:, 2))

plot(t, y(:,2) + x ust(2))

hold off

title("Temperatura cieczy w funkcji czasu')

xlabel ("*Czas symulacji [s]')

ylabel (""'Temperatura (T) [K]')

legend("Model nieliniowy®, “"Model liniowy", “Location®, "best®)

subplot(2, 1, 2)

plot(t, x n_lin_2(:, 2) - (y(:,2) + x ust(2)))
title("'Wykres biedu'™)

xlabel ("'Czas symulacji [s]™)

ylabel (""Wielkos¢ btedu'™)

Temperatura cieczy w funkcji czasu
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Modele juz na pierwszy rzut oka nie zachowujg sie identycznie. Ciecz w zbiorniku nie osigga zadanej
temperatury, lecz model liniowy zbliza sie do niej bardziej. Sama warto$¢ btedu znaczgco wzrosta, nie maleje do
zera, utrzymuje sie na ujemnym poziomie. Wniosek jest taki, ze korzystajac z modeléw zlinearyzowanych trzeba
trzymac sie punktu pracy i ewentualnie przetgcza¢ miedzy r6znymi modelami symulujgcymi r6zne punkty pracy.
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