
SPRAWOZDANIE 8
Modelowanie Systemów Dynamicznych

Temat ćwiczenia: Modelowanie i symulacja zbiornika z grzaniem

Michał Midor, gr. 5, 3.12.2025 r. - Środa 13.15

Cel ćwiczenia:
Celem jest zamodelowanie zbiornika ze stałym wpływem i wypływem cieczy oraz jej grzaniem, jedynie na 

fizycznym opisie - grzaniu oraz zmianie poziomu cieczy. Zastosowane zosatnie numeryczne rozwiązanie 

równań różniczkowych opsiujących model zbiornika za pomocą metody Eulera.

Rozwiązanie zadań:
Modelowanie należy rozpocząć do analizy struktury fizycznej badanego układu.

System wykorzystuje pompę do stabilizacji wypływu (w), co uniezależnia natężenie strumienia wyjściowego 

od aktualnego poziomu spiętrzenia cieczy w zbiorniku (V). Model uwzględnia strumień zasilający (wi) o 

temperaturze wejściowej (Ti), moc grzałki (Q) oraz wspomniany stały odpływ.

Obecność mieszadła mechanicznego pozwala na przyjęcie założenia o idealnym wymieszaniu, co upraszcza 

opis do układu o parametrach skupionych – temperatura cieczy wewnątrz zbiornika jest równa temperaturze na 

odpływie (T).

Dynamikę zmian parametrów stanu wyznaczamy w oparciu o fundamentalne zasady zachowania, co prowadzi 

do sformułowania dwóch równań różniczkowych:

• Równianie ciągłości (bilans masy). Według tego równiania szybkość zmiany objętości zależy wyłącznie 

od różnicy strumieni masowych dopływających i odpływających, skorelowanych z gęstością cieczy.

• Bilans cieplny (energia wewnętrzna. Równanie to wskazuje, że ewolucja temperatury w czasie jest 

wypadkową energii niesionej przez strumień zasilający oraz mocy dostarczonej przez układ grzewczy, 

przy uwzględnieniu ciepła właściwego (C).

Do ich rozwiązana zostanie wykorzystana metoda Eulera zaimplementowana iteracyjnie, zapewniająca pełńa 

kontrolę nad przebiegiem każdego kroku symulacji i ułatwia modyfikację parametrów w czasie rzeczywistym.

Najpierw należy zdefiniować podstawowe stałe wykorzystywane w symulacji.

Dla wydajności już przed pętlą tworzony jest pusty wektor V o długości t, tak by z każdą iteracją pętli nie musiał 

być rozszerzany, co jest kosztowne.

clear;
N = 10000; % liczba próbek
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h = 0.1; % okres próbkowania – 10 próbek to jedna sekunda
Qmax = 25000; % [W] moc maksymalna grzałki
wust = 0.4; % [kg/s] przepływ w stanie ustalonym
Ti = 293; % [K] temperatura cieczy wlotowej
Tust = 303; % [K] temperatura cieczy wylotowej w stanie ustalonym
Vust = 0.04; % [m3] objętość w stanie ustalonym
C = 4200; % [J/(KgK)] ciepło właściwe wody
ro =1000; % [Kg/m3] gęstość wody

w = wust; % wypływ
wi = wust; % wpływ

t = 0:h:(N-1)*h; % albo (0:N-1)*h

V = zeros(1,N); % dla wydajności
V(1) = Vust;

for i = 1:N-1
    dV = (wi-w)/ro;
    V(i+1) = V(i) + dV*h;
end

figure()
plot(t, V)
title('Zmiana objętości')
ylabel('Objętość (V) [m^3]')
xlabel ('Czas (t) [s]')
ylim([-0.3, 0.3])

Dla wypływu równego dopływowi, zgodnie z oczekiwaniami objętość cieczy w zbiorniku się nie zmienia w 

czasie.
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Aby zwizualizować zachowanie temperatury zbiornika trzeba uwzględnić rozwiązywanie drugiego równania 

różniczkowego w pętli - tego odpowiedzialnego właśnie za temperaturę, a także stworzenie pustego wektora 

na temperature przed pętlą oraz ustalenie stanu początkowego (pierwszego elementu wektora) na temperaturę 

cieczy wpływającej. 

Ostatnim elementem jest wyliczenie mocy grzania grzałki w stanie ustalonym. Wyliczą się ją poprzez 

wyzerowanie pochodnej po lewej stronie drugiego równania.

T = zeros(1,N);
T(1) = Ti;

Q_ust = wi*C*(Tust-Ti); 

for i=1:N-1
    dV = (wi-w)/ro;
    V(i+1) = V(i) + h*dV;
    
    dT = (wi*(Ti-T(i))+(Q_ust/C))/(V(i)*ro);
    T(i+1) = T(i) + h*dT;
end

t = 0:h:(N-1)*h; % albo (0:N-1)*h
figure()
plot(t,T);
title('Zmiana temperatury')
ylabel('Temperatura (T) [K]')
xlabel ('Czas (t) [s]')

Na wykresie widać, że po pewnym czasie temperatura stabilizuje się na zadanym poziomie. Widoczna 

odpowiedź skokowa na zadaną moc grzałki sugeruje, że badany obiekt jest obiektem inercyjnym pierwszego 

rzędu.
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Kolejną symulowaną sytuacją będzie większa wartość odpływu od dopływu, co powodować będzie opróżnianie 

zbiornika. By zapobiec sytuacji, w której objętość osiągałaby wartości ujemne, co nie miałoby fizycznego sensu, 

użyta została instrukcja warunkowa zamieniająca wynikowe wartości ujemne na zerowe.

w = wust+0.1; % wypływ
wi = wust; % wpływ

t = 0:h:(N-1)*h; % albo (0:N-1)*h

V = zeros(1,N); % dla wydajności
V(1) = Vust;

T = zeros(1,N);
T(1) = Ti;

Q_nieust = wi*C*(Tust-Ti)

Q_nieust = 
16800

for i = 1:N-1
    dV = (wi-w)/ro;
    V(i+1) = V(i) + dV*h;

    if V(i+1) < 0
        V(i+1) = 0;
    end

    dT = (wi * (Ti - T(i)) + Q_nieust / C) / (V(i) * ro);
    T(i+1) = T(i) + dT*h;
end
plot(t, V)
title('Zmiana objętości')
ylabel('Objętość (V) [m^3]')
xlabel ('Czas (t) [s]')
grid on;
ylim([-0.3, 0.3])
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plot(t, T)
title('Zmiana temperatury')
ylabel('Temperatura (T) [K]')
xlabel ('Czas (t) [s]')

Analizując powyższe dwa wykresy widać, że zgodnie z przewidywaniami objętość cieczy w zbiorniku maleje 

liniowo, a następnie wynosi 0. Z kolei ponieważ jest mniej cieczy, to szybciej się grzeje i do osiągnięcia zadanej 

temperatury wystarcza już 400s, a nie 600s jak w przypadku stanu ustalonego.

Należy jednak podkreślić, że z punktu widzenia bezpieczeństwa technicznego, doprowadzenie do takiego stanu 

w rzeczywistej instalacji jest niedopuszczalne. W sytuacji braku cieczy roboczej grzałka traci środek odbierający 

ciepło, co prowadzi do jej błyskawicznego przegrzania i trwałego zniszczenia.
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W następnej sytuacji na powrót w układzie będzie równy dopływ i odpływ natomiast zmienna będzie moc 

grzałki. Wystąpi 5 części mocy grzania, początkową, trzecią i piątą wartością będzie wartość w stanie 

ustalonym, natomiast w 2 i 4 części moc ta będzie przeskalowana.

w = wust; % wypływ
wi = wust; % wpływ

t = 0:h:(N-1)*h; % albo (0:N-1)*h

V = zeros(1,N); % dla wydajności
V(1) = Vust;

T = zeros(1,N);
T(1) = Ti;

Q_ust = wust*C*(Tust-Ti);
X = ones(1,floor(N/5)); % podział na 5 części
Q_mod = [Q_ust*X, 0.5*Q_ust*X, Q_ust*X, 1.5*Q_ust*X, Q_ust*X]; % wektor o 
długości równej, z pięcioma mocami grzania

for i = 1:N-1
    Q = Q_mod(i);

    dV = (wi-w)/ro;
    V(i+1) = V(i) + dV*h;

    if V(i+1) < 0
        V(i+1) = 0;
    end

    dT = (wi * (Ti - T(i)) + Q / C) / (V(i) * ro);
    T(i+1) = T(i) + dT*h;
end

plot(t, T)
title('Zmiana temperatury w funkcji czasu')
ylabel('Temperatura (T) [K]')
xlabel ('Czas (t) [s]')
xlim([0, N*h])
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Dla takiej sytuacji objętość w czasie oczywiście nie będzie się zmieniać, natomiast można zaobserwować 

ciekwy przebieg temperatury. Osiągane jest prawie 308 stopnia, gdy grzałka grzeje 50% mocniej niż potrzebne 

do stanu ustalonego, co jest logiczne - temperatura wzrasta o 50% więcej w stosunku do zadanego wzrostu o 

10 stopni.

Następnie taka sytuacja zostaje zasymulowana, lecz dla różnych wartości wpływu i wypływu (gdy te 

pozostają sobie równe). Zastosowana zostanie dodatkowa zewnętrzna pętla iterująca po różnych wartościach 

przemieszczenia cieczy, gdyż dla każdej z nich wartość mocy grzałki będzie inna.

w = wust; % wypływ
wi = wust; % wpływ

t = 0:h:(N-1)*h; % albo (0:N-1)*h

V = zeros(1,N); % dla wydajności
V(1) = Vust;

T = zeros(1,N);
T(1) = Ti;

Q_ust = wust*C*(Tust-Ti);
X = ones(1,floor(N/5)); % podział na 5 części
Q_mod = [Q_ust*X, 0.5*Q_ust*X, Q_ust*X, 1.5*Q_ust*X, Q_ust*X]; % wektor o 
długości równej, z pięcioma mocami grzania

figure(); 
subplot(2,1,1);
plot(t, Q_mod);
title("Moc grzałki")
xlabel("Czas [s]")
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ylabel("Moc grzałki [W]")
grid on;

subplot(2,1,2);
hold on;

ws = [0.4 0.5 0.6];

ws = 1×3
    0.4000    0.5000    0.6000

for w_teraz = ws
    wi = w_teraz;
    w = w_teraz;
    
    % Obliczenie Q_ust dla każdego z przepływów
    Q_ust = wi*C*(Tust-Ti);
    X = ones(1,floor(N/5)); % podział na 5 części
    Q_mod = [Q_ust*X, 0.5*Q_ust*X, Q_ust*X, 1.5*Q_ust*X, Q_ust*X];

    for i=1:N-1
        Q = Q_mod(i);
    
        dV = (wi-w)/ro;
        V(i+1) = V(i) + dV*h;
    
        if V(i+1) < 0
            V(i+1) = 0;
        end
    
        dT = (wi * (Ti - T(i)) + Q / C) / (V(i) * ro);
        T(i+1) = T(i) + dT*h;
    end 

    plot(t, T, 'DisplayName', ['w = wi = ', num2str(w_teraz),'kg/s V = 0.4 
m^3']);
end
legend('Location','southeast');

title('Temperatury cieczy w zbiorniku dla stałej objętości przy różnych 
przepływach')
ylabel('Temperatura (T) [K]')
xlabel ('Czas (t) [s]')

grid on
hold off;
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Na pierwszym wykresie przebieg mocy grzałki dla wypływu i dopływu równych 0.4 kg/s, na drugim zaś 

porównanie przebiegu temperatury cieczy dla różnych jej przepływów.

Charakterystyki przebiegu temperatury są do siebie zbliżone, przy czym pierwsza część nagrzewania zbiornika 

powoduje największą różnicę - najszybszy wzrost temperatury występuje w sytuacji największej wartości 

przepływu.

Końcowa symulacja przedstawi charakterystyki zmiany temperatury dla stałego przepływu ale różnych 

objętościach cieczy w stanie ustalonym.

w = wust; % wypływ
wi = wust; % wpływ

t = 0:h:(N-1)*h; % albo (0:N-1)*h

V = zeros(1,N); % dla wydajności

T = zeros(1,N);
T(1) = Ti;

Q_ust = wust*C*(Tust-Ti);
X = ones(1,floor(N/5)); % podział na 5 części
Q_mod = [Q_ust*X, 0.5*Q_ust*X, Q_ust*X, 1.5*Q_ust*X, Q_ust*X]; % wektor o 
długości równej, z pięcioma mocami grzania

figure(); 
subplot(2,1,1);
plot(t, Q_mod);
title("Moc grzałki")
xlabel("Czas [s]")
ylabel("Moc grzałki [W]")
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grid on;

Vs = [0.04 0.06 0.08];

subplot(2,1,2);
hold on;

for V_teraz = Vs
    V(1) = V_teraz;

    Q_ust = wust*C*(Tust-Ti);
    X = ones(1,floor(N/5)); % podział na 5 części
    Q_mod = [Q_ust*X, 0.5*Q_ust*X, Q_ust*X, 1.5*Q_ust*X, Q_ust*X]; % wektor 
o długości równej, z pięcioma mocami grzania

    for i=1:N-1
        Q = Q_mod(i);

        dV = (wi-w)/ro;
        V(i+1) = V(i) + h*dV;

        if V(i+1) < 0
            V(i+1) = 0;
        end
        
        dT = (wi*(Ti-T(i))+(Q/C))/(V(i)*ro);
        T(i+1) = T(i) + h*dT;
    end
    
    plot(t, T, 'DisplayName', ['w = wi = 0.4, V = ', num2str(V_teraz)]);
end

legend('Location','southeast');
grid on;
hold off;
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Na pierwszym wykresie ponownie przebieg mocy grzałki dla wypływu i dopływu równych 0.4 kg/s.

Z drugiego zaś wykresu płynie wniosek, że większe ilości cieczy trudniej jest ogrzać, wymaga to więcej czasu i 

temperatura ostateczna nie jest tak wysoka jak w przypadku mniejszych objętości.
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