SPRAWOZDANIE 6

Modelowanie Systemow Dynamicznych
Temat ¢wiczenia: Rozwigzywanie ODE w Matlabie

Michat Midor, gr. 5, 26.11.2025 . - Sroda 13.15

Cel éwiczenia:

Celem laboratorium jest praktyczne zrozumienie numerycznych metod rozwiazywania réwnan rézniczkowych
zwyczajnych (ODE). Cwiczenie ma na celu:

1. Zbadanie wptywu wielkos$ci kroku catkowania (h) na doktadno$¢ i stabilnos¢ najprostszej metody
numerycznej — metody Eulera.

2. Zrozumienie kompromisu pomiedzy kosztem obliczeniowym a precyzja wyniku.

3. Poréwnanie metody Eulera z zaawansowanym solverem ode45 (wykorzystujgcym metode Rungego-
Kutty rzedu 4/5).

4. Implementacje uktadu dynamicznego w przestrzeni standw na przyktadzie modelu ladujgcego
samolotu na lotniskowcu oraz wizualizacje zmiennych, ktére nie sg bezposrednio zmiennymi stanu
(przyspieszenie).

Rozwigzanie zadan:

Rownania rozniczkowe opisuja wiekszos¢ zjawisk fizycznych, jednak rzadko posiadajg proste rozwigzania
analityczne. W inzynierii standardem jest wykorzystywanie metod numerycznych. W pierwszej czeSci zadania
analizowana jest metoda Eulera, ktéra przybliza pochodng ilorazem r6znicowym. Jest ona intuicyjna, lecz
generuje btedy kumulujace sie w czasie, co wymusza stosowanie bardzo matego kroku czasowego. W drugiej
czesci wykorzystany jest wbudowany w Srodowisko MATLAB solver ode45. Jest to algorytm jednokrokowy,
ktory dynamicznie dobiera wielko$¢ kroku catkowania, zageszczajgc punkty tam, gdzie funkcja zmienia sie
gwattownie, a rozrzedzajac tam, gdzie jest "gtadka". Pozwala to na uzyskanie wysokiej doktadnosci przy
zminimalizowanym czasie obliczen. Finalnie przeprowadzona jest symulacja systemu hamowania samolotu,
sprowadzajgc rownania ruchu drugiego rzedu do uktadu réwnan pierwszego rzedu w postaci wektorowej.

Zadanie 1:
W pierwszym etapie ¢wiczenia skupiamy sie na numerycznym rozwigzaniu réwnania rézniczkowego:

dy
E = f(f;JJ) =2t

na przedziale t [0, 3], z warunkiem poczatkowym y0 = 0. Wykorzystujemy metode Eulera, ktora jest metoda
iteracyjng opartg na schemacie:

Yn+1 =Yn t h- f(tnlyn)J
t?‘l+1 - tn + h

Kluczowym parametrem jest tutaj krok 'h', ktory determinuje gestos¢ prébkowania czasu. Celem jest
poréwnanie wynikow numerycznych z rozwigzaniem analitycznym y(t)=t"2 dla ro6znych wartosci kroku 'h'.

t start = O;



t end = 3;
y0 = 0; % Warunek poczgtkowy

h_values = [1, 0.5, 0.25, 0.125];

figure;

hold on;

grid on;

title("Rozwigzanie rownania y"" = 2t metoda Eulera®);
xlabel("t");

ylabel("y(1)");

t anal = t_start:0.01:t _end;
y anal = t_anal ."2;
plot(t_anal, y_anal, "DisplayName®, “Analityczne (t"2)7);

dy = @(t, y) 2*t; % uchwyt do funkcji

colors = {"r", "g", "b", "m"};

for 1:1ength(h_values)
h_values(i);
t start:h:t _end;

zeros(size(t)); % dla wydajnosci

<K = I
1]

y(1) = y0; % Warunek poczgtkowy

for n = 1:length(t)-1 % implementacja metody Eulera
tn = t(n);
yn = y(n);

current_dy = dy(tn, yn);

y(n+1l) = yn + h*current_dy;
end
plot(t, y, "o-", "Color®, colors{i}, °"MarkerFaceColor®, colors{i},
"MarkerSize®, 4, ...
"DisplayName®, sprintf("Euler h=%.3f", h));
end

legend("Location®, “best®);
hold off;



Rozwigzanie rownania y' = 2t metodg Eulera

Analityczne (1)
—e— Euler h=1.000
——a— Euler h=0.500
7t —s— Euler h=0.250
—=— Euler h=0.125

(1)

Wraz ze zmniejszaniem parametru 'h' otrzymywane rozwigzania sg coraz bardziej zblizone do analitycznego.
Niestety, nawet przy najmniejszym zastosowanym kroku (h=0.125), metoda Eulera nadal generuje zauwazalny
btad i odchylenie od krzywej wzorcowej, co wynika z jej prostej konstrukcji i kumulowania sie btedéw w
kolejnych krokach.

Zadanie 2:

Srodowisko MATLAB oferuje zaawansowane narzedzia do rozwigzywania ODE, tzw. solvery, ktére
automatycznie dobierajg optymalny krok catkowania w kazdej iteracji, kontrolujac btad. Najpopularniejszym z
nich jest ode45, oparty na metodzie Rungego-Kutty rzedu 4 i 5. W tym zadaniu rozwigzujemy to samo réwnanie
y'=2t przy uzyciu ode45, aby poréwnac jego skutecznos$¢ z metoda Eulera. Uzywany jest tu uchwy do funkcji
pod nazwa 'ode_fun' ktéry pozwala przekazac solverowi funkcje do rozwigzania.

figure;

hold on;

grid on;

title("Rozwigzanie rownania y"" = 2t metodg Eulera®);
xlabel("t");

ylabel ("y(t)");

plot(t_anal, y_anal, "DisplayName®, “Analityczne (t"2)7);
ode fun = @(t,y) 2*t;

legend("Location”, “best");

opts = odeset("stats”,"on");

tspan = [t_start t_end];

y0 = 0;

[t,y] = oded45(ode_fun, tspan, y0, opts); % dopasowuje krok - jesli funkcja
skreca to zmniejsza krok, by



10 successful steps
0 failed attempts
61 function evaluations

% zachowa¢ doktadnos¢, a jezeli jest ptaska, to zwieksza, by oszczedzi¢ moc
obliczeniowa

plot(t,y(:,1));

hold off;
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Uzycie solvera ode45 pozwolito ha osiggniecie praktycznie idealnego odtworzenia wyniku analitycznego y=t"2.
Solver dynamicznie dostosowat punkty obliczeniowe, zapewniajgc wysoka doktadnos¢ przy zoptymalizowanym
koszcie obliczeniowym, co stanowi znaczacg przewage nad statokrokowg metoda Eulera. Rozwigzanie za
pomoca ode45 pokrywa sie idealnie z analitycznym (datal to rozwigzanie ode45).

Przyktad - Wahadto z ttumieniem:

Aby przetestowac solver na bardziej ztozonym obiekcie, modelujemy ruch wahadta z ttumieniem opisanego
réwnaniem nieliniowym drugiego rzedu:

b . m

0= " Tm=2p

sinf

Réwnanie to sprowadzamy do uktadu dwdch réwnan pierwszego rzedu w przestrzeni stanow:

V1= Y2

b mg

Y2 = —EJ’z —msm}’:

Symulacja startuje z wychylenia 45 stopni (pi/4) i zerowej predkosci poczatkowej.

opts = odeset("stats”,"on");



tspan = [0 25];
y0 = [pi/4, 0];
[t,y] = oded4d5(@wahadlo, tspan, yO, opts);

96 successful steps
0 failed attempts
577 function evaluations

plot(t,y(:,1),t,y(:,2))
legend("\theta“", "\theta""")
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Solver ode45 poprawnie rozwigzat uktad réwnan. Na wykresach (kat i predkos$¢ katowa) wyraznie widaé
charakterystyke ttumionych oscylacji harmonicznych. Amplituda wychylern maleje w czasie, co jest zgodne z
fizyczng naturg zjawiska zanikania energii przez ttumienie.

Zadanie 3:

Ostatnim etapem jest symulacja lgdowania samolotu na lotniskowcu poprzez zamodelowanie uktadu
hamownika. Model uwzglednia nieliniowe sity sprezystosci lin oraz site ttumienia hydraulicznego zalezng od
predkosci. Réwnania ruchu obejmujg 6 zmiennych stanu. Poniewaz przyspieszenie samolotu nie jest zmienng
stanu (jest pochodng predkosci), solver nie zwraca go bezposrednio. Aby je wyznaczy(€ i zwizualizowag,
wykorzystujemy funkcje wyjscia (OutputFcn) oraz zmienng globalng w3, ktéra gromadzi obliczone wartosci
przyspieszenia w kazdym kroku solvera. Uzywamy opcji Refine ustawionej na 1, aby zsynchronizowa¢ kroki

solvera z zapisem do zmiennej globalnej w3.

global w3

options = odeset("OutputFcn®,@hamownik_out, "Refine”,1);

[T,Y] = oded4d5(@hamownik,[0 20],[0 67 O O O O],options);

Y; % solver zwraca tylko zmienne stanu, czyli caktki | x, x", y2, y2", y3, y3"
% x (zmodyfikowane geometrycznie yl, bo nieliniowe) - samolot , y2 -
bloczek, y3 - tdumik wodny



w3; % macierz z przyspieszeniem samolotu, trzeba ja "wydoby¢"™ od solvera
figure("Name®, “Analiza Ladowania®, “Color", “white®);

% 1. Potozenie samolotu

subplot(3,1,1);

plot(T, Y(:,1), "b"); % pierwsza kolumna zmiennych stanu
grid on;

ylabel (*Droga [m]");

title("Przemieszczenie samolotu (x)");

% 2. Predkos¢ Samolotu

subplot(3,1,2);

plot(T, Y(:,2), "g"); % druga kolumna zmiennych stanu
grid on;

ylabel ("Predkos¢ [m/s]");

title("Predkos¢ samolotu (v)*);

% 3. Przyspieszenie Samolotu

subplot(3,1,3);

len = min(length(T), length(w3)); % Zabezpieczenie przed rozng dfugoscig
wektoréw, co moze sie zdarzy¢ przy uzywaniu ode45 w potaczeniu z global
plot(T(1:1en), w3(l:len), °“rv);

grid on;

xlabel("Czas [s]");

ylabel ("Przeciagzenie [m/s"2]");

title("Przyspieszenie samolotu (a)°);
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Uzyskane przebiegi (droga, predkosc¢, przyspieszenie) pokrywaja sie z wynikami oczekiwanymi. Wykres
przyspieszenia pokazuje skoki sit dziatajgcych na pilota i samolot.



